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Abstract 
In this paper, we present explicit Painlevé test for the potential Boussinesq equation, The murrary equation, The 
(2 + 1) Calogero equation, The Rosenau – Hyman equation (RH), Cole – Hopf  (CH)  equation, The Fornberg – 
Whitham equation (FW), Some of these equations have shown to  possess Painlevé property, therefore, are 
Painleve integrable  while the rest   did not pass the test and reasons for that  are conjectured. 
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______________________________________________________________________________________________________________________________________  

Introduction:  
Nonlinear partial differential equations (NLPDEs) [1] are widely used to describe complex phenomena in 
various fields of sciences, especially in physics. Therefore solving nonlinear problems plays an important role 
in nonlinear sciences. In this direction, many effective methods for determining exact solutions of NLPDEs 
have been established and developed during the past few decades. Among the various different methods, the 
Lie symmetry method, also called Lie group method, is one of the most powerful methods to determine 
solutions of NLPDEs. The fundamental basis of this method is that when a differential equation is invariant 
under a Lie group of transformations [2–4], a reduction transformation exists. For PDEs with two independent 
variables, a single group reduction transforms the PDEs into ordinary differential equations (ODEs), which are 
generally easier to solve. In the recent past there have been considerable developments in symmetry methods 
for differential equations as is evident by the number of research papers, books and new symbolic software 
devoted to the subject. 
The (2 + 1)–dimensional PKP equation [5]: 
                                                                          σxt + 	σxσxx + 	σxxxx 	σyy = 0 ,                                                (1.1) 
describes the dynamics of 2–dimensional, small, but finite amplitude waves and solitons in a variety of media, 
for example, in plasma physics, hydrodynamics and solid–state physics. Eq. (1.1) is also derived in various 
physical contexts assuming that the wave is moving along x and all changes in y are slower than in the direction 
of motion [6]. By using various techniques and methods exact traveling wave solutions, linear solitary wave 
solutions, soliton–like solutions and some numerical solutions were obtained in [7–10]. However, in 
multifarious real physical backgrounds, nonlinear partial differential equations with variable coefficients often 
provide more powerful and realistic models than their constant coefficient counterparts when the 
inhomogeneities of media is considered. So it is of great importance to find exact solutions of NLPDEs with 
variable coefficients and recently, many authors have researched in this direction [11–16]. 
The integrability of non–linear partial differential equations (NLPDEs) is an interesting topic in non–linear  
sciences. Many methods have been established by mathematicians and physicists to study the integrability of  
NLPDEs. Some of the most important methods  and notations , for integrability are the bilinear method [17],  
the symmetry reductions [18], Bäcklund and Darboux transformations [19], the Painleve analysis method 
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and the Lax pairs can be found from the Painlevé analysis [30], the Lax pairs of many Painlevé integrable 
models have not yet been found [25,26]. Therefore, when saying a model is integable, we must say under what 
specific meaning(s). for example, we say a model is Painlevé inegrable if the model has the Painlevé property, 
and a model is Lax or IST [27,28](inverse scattering transformation) integrable if the model has a Lax pair and 
can be solved by the IST approach. 
 
Painlevé analysis method: 
      Painlevé property is a method of investigation for the integrability properties of many NLEEs . If a PDE 
which has no points such as movable branch, algebraic and logarithmic then is called P–type. An ordinary 
differential equation (ODE) might still admit movable essential singularities without movable branch points. 
This method does not identify essential singularities and therefore it provides only necessary conditions for an 
ODE to be of P–type. Singularity structure analysis admitting the P–property advocated by Ablowitz et al. For 
ODEs and extended to PDE by Weiss, Tabor and Carnevale (WTC), plays a key role of investigating the 
integrability properties of many NLEEs. The well–known procedure of WTC requires, 
1. The determination of leading orders Laurent series, 
2. The identification of powers at which the arbitrary functions can enter into the Laurent series called 
resonances, 
3. Verifying that , at the resonance values , sufficient number of arbitrary functions exist without introducing 
the movable critical manifold.  
According to the WTC method, the general solution of PDE is in the below from 

                                                                             u( x, t ) = φα(x, t)


0j
ju (x, t) φj (x, t),                                    (2.1) 

where α is negative integer, φ( x, t ) = 0 is the equation of singular manifold. The functions uj ( j = 0, 1, 2,...) 
have to be determined by substitution of expansion (2.1) into the PDE, So PDE becomes 

                                                             ∑ 퐸 j( u0 ,…,uj ,φ ) φj+q (x , t) = 0,                                         (2.2) 
 where q is some negative constant . Ej depends on φ only by the derivatives of φ. The successive practical steps 
of  Painlevé analysis are the following: 
1– Determine the possible leading orders α by balancing  two or more terms of the PDE and expressing that 
they dominate the other terms. 
2– Solve equation E0 = 0 for non–zero values of u0 ; this may lead to several solutions, called branches. 
3– Find the resonances, i.e. the values of  j for which uj cannot be determined from equation Ej = 0. This last 
equation has generally the form  

                                   Ej = ( j + 1 ) p(j) 휑   휑 uj + Q ( u0 ,…, uj–1 ,φ ) = 0, ∀  j > 0,                        (2.3) 
Where n is order of the PDE, 0 ≤ i ≤ n and p is a polynomial of degree n–1 . 
The values of the resonances are the zeros of p . 
4– Determine whether the resonances are , compatible, or not. At resonance , after substitution in (2.3) of the 
previously computed ui, i ≤  j – 1 , the function Q is either zero or non–zero then in the case uj can be arbitrarily 
chosen and the expansion (2.2) does not exist for arbitrary φ, so the resonance is called compatible.    
5– All resonances occur at positive integer values of  j  and are compatible.    
 
3.  The potential Boussinesq equation :  
                                                                          utt + uxuxx + uxxxx = 0,                                                               (3.1)  
We first present the Painlevé test of the potential Boussinesq equation. According to the WTC method, the 
general solution of PDE is in the form  
                                                                 u( x, t ) = φα (x, t) ∑ 푢∞

j (x, t) φj(x, t),                                            (3.2) 
where α is negative , φ(x, t) = 0 is the equation of singular manifold.  
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The function uj ( j = 0, 1, 2,...) have to be determined by substitution of expansion into the PDE, So it becomes  
                                                                        ∑ 퐸∞

j ( u0 ,…,uj ,φ ) φj+q (x,t) = 0,                                           (2.2) 
where q is some negative constant. Ej depends on φ only by the derivatives of φ. 
The leading order of solution of equation (3.2) is assumed as   
                                                                                   u ≈ uo φ∝  ,                                                                           (3.3) 
Substituting  Eq. (3.3) into (3.1) and equating the most dominant terms, 
the following results are obtained                              
                                                                                α = –1,   uo = 12φx .                                                            (3.4) 
For finding the resonances, the full Laurent series : 
                                                                                 u = u0 φ–1 +∑ 푢∞

j φj–1 ,                                                  (3.5) 
is substituted into Equation (3.1) and by equating the coefficients of φj–5 , the polynomial equation in  j is 
derivated as 

j3 – 4 j2 – j + 4 = 0, 
                                                                      ( j – 1)( j + 1 )( j – 4 ) = 0,                                                           (3.6) 
Using the previous Eq. (3.4), the resonances are found to be j = –1 , 1, 4 
As usual, the resonance at j = –1 corresponds to the arbitrariness of singular manifold φ(x , y, z, t ) = 0. In order 
to check the existence of sufficient number of arbitrary functions at the other resonance values, the full Laurent 
expansion (3.5) is substituted in Eq. (3.1). From the coefficient of φ–5, the explicit value of u0 is obtained as 
given in Eq. (3.4). Collecting the coefficient of φ–4, the result is obtained as zero. Absence of u1 proves that u1 
is arbitrary. This corresponds to the resonance value at j = 1. As solving these algebraic equations by Maple 
program , we obtain the results: u1, u2,u3,u4,u5,u6 . Collecting the coefficient of φ–3 , the following equation is 
obtained to give u2 as  
u2 = 	( - 8 u0 φx φx,x,x, + u0 φx u0,x,x + u0,x u0 φx,x + 2푢 ,x φx – 2 u1,x u0 휑  – 6 uo 휑 ,  – 24 u0,x  φx φx,x – 12 

u0,x,x 휑

 

).                                                                                                                                                           (3.7) 
Proceeding further to the coefficient of φ–2, the value of u3 is obtained as  
u3 = 	( - 6 u0,x,x φx,x + u0 φx,x,x,x  + 2 u0 φx u2 φx,x  + 푢  φx u1,x,x –  uo,x u0,x,x + u1,x uo 휑 ,  + 2 u1,x  φx  uo,x + 2 

u2 u0,x 휑 		+ 4 u0,x,x,x φx + 4 uo,x φx,x,x  ).                                                                                                              (3.8) 

Collecting the coefficient of φ–1 , the result is obtained as zero. Absence of u4 proves that u4 is arbitrary. This 
corresponds to the resonance value at j = 4. 
And so on. we conclude that the equation be amenable to integration possible. 
To construct the Bäcklund transformation of Eq. (3.1), let us truncate the Laurent series  

    u = 


0u + u1 + u2  + u3
2 + u4

3 , 

Hence  
                                                                u =  + u1 + u2 φ + u3 φ2 + u4 φ3 .                                                (3.7) 

where the pair of function (u,u4) satisfy Eq. (3.1) and hence Eq. (3.7) may be the associated Bäcklund 
transformation of Eq. (3.1). 
 
4. The murrary equation :   
                                                                  uxx + λ1 u ux  + λ2 u – λ3 u2 – ut = 0,                                                 (4.1)                                                          
        λ1 , λ2 , λ3 are constant. 
We first present the Painlevé test of the murrary equation. According to the WTC method, the general solution 
of  PDE  is in the form  
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                                                              u( x, t ) = φα (x, t) ∑ 푢∞
j (x, t) φj(x, t),                                               (4.2)   

where α is negative , and φ(x, t) = 0 is the equation of singular manifold.  
The function uj ( j = 0, 1, 2,...) have to be determined by substitution of expansion into the PDE, So it becomes  

∑ 퐸∞
j( u0 ,…,uj ,φ ) φj+q (x,t) = 0, 

where q is some negative constant. Ej depends on φ only by the derivatives of φ. 
The leading order of solution of equation (4.2) is assumed as  
                                                                              u ≈ uo φ∝ .                                                                                      (4.3) 
Substituting  Eq. (4.3) into (4.1) and equating the most dominant terms, the following results are obtained  
                                                                            α = –1,  uo =                                                                      (4.4) 

For finding the resonances, the full Laurent series : 
                                                                      u = u0 φ–1 + ∑ 푢j φj–1                                                              (4.5) 
is substituted into Equation (4.1) and by equating the coefficients of φj–3 , the polynomial equation in  j is 
derivated as   
                                                                  ( j + 1 )( j – 2 ) λ1 = 0,                                                                     (4.6) 
Using the previous Eq. (4.4), the resonances are found to be j = –1 , 2. 
As usual, the resonance at j = –1 corresponds to the arbitrariness of singular manifold φ(x , y, z, t ) = 0. In order 
to check the existence of sufficient number of arbitrary functions at the other resonance values, the full Laurent 
expansion (4.5) is substituted in Eq. (4.1). From the coefficient of φ–3, the explicit value of u0 is obtained as 
given in Eq. (4.4). Collecting the coefficient of φ–2, the following equation is obtained to give u1 as solving 
these algebraic equations by Maple program , we obtain the results: u1, u2,u3,u4,u5,u6 

 

Collecting the coefficient of φ–1 , the result is obtained as zero. Absence of u2 proves that u2 is arbitrary. This 
corresponds to the resonance value at j = 2. 
From the coefficient of φ0, the value of u3 is obtained as  
u3 = - 

	 	 	
 ( u2φx,x + 2 u2,x φx + u0,x λ1 u2 + u1,x,x + u2,x λ1 u0 + λ1 u1 u1,x + λ1 u1 u2 φx ). 

Proceeding further to the coefficient of φ–2, the value of u3 is obtained as  
u4 = -  

(	 	 	 	)	
 (λ1 u2 u1,x + λ1 푢  φx + 2 u3 φx,x + u3,x λ1 u0 + u0,x λ1 u3 + 4 u3,x φx + λ1 u1 u2,x + 2 λ1  u1 u3 

φx + u2,x,x ).  
and so on. we conclude that the equation be possess to integration possible. 
To construct the Bäcklund transformation of Eq. (4.1), let us truncate the Laurent series  

u = 


0u + u1 + u2  + u3
2 + u4

3 , 

Hence  
                                                              u = 

	 	
 + u1 + u2 φ + u3 φ2 + u4 φ3 .                                                  (4.7) 

where the pair of function (u,u4) satisfy Eq. (4.1) and hence Eq. (4.7) may be the associated Bäcklund 
transformation of Eq. (4.1). 
 
5. The ( 2 + 1 ) Calogero equation  
                                                                  uxxxy  – 2 uy uxx  – 4 ux uxy + uxt = 0,                                                  (5.1)  
We first present the Painlevé test of the Calogero equation. According to the WTC method, the general solution 
of PDE is in the form  
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                                                              u( x, t ) = φα (x, t) ∑ 푢j (x, t) φj(x, t),                                               (5.2)  
where α is negative , φ(x, t) = 0 is the equation of singular manifold.  
The function uj ( j = 0, 1, 2,...) have to be determined by substitution of expansion into the PDE, So it becomes  

∑ 퐸j ( u0 ,…,uj ,φ ) φj+q (x,t) = 0, 
where q is some negative constant. Ej depends on φ only by the derivatives of φ. 
The leading order of solution of equation (5.2) is assumed as  
                                                                                u ≈ uo φ∝ .                                                                                (5.3)  
Substituting  Eq. (5.3) into (5.1) and equating the most dominant terms,   
and so on.the following results are obtained  

                                                                           α = –1 , uo = – 12φx .                                                               (5.4) 

For finding the resonances, the full Laurent series : 
                                                                    u = u0 φ–1 +∑ 푢j φj–1 ,                                                               (5.5) 
is substituted into Equation (5.1) and by equating the coefficients of φj–5 , the polynomial equation in j is 
derivated as    
                                                                            j2 – 5j – 6 = 0, 
                                                                         ( j + 1 )( j – 6 ) = 0.                                                                  (5.6) 
Using the previous Eq. (5.4), the resonances are found to be j = –1 , 6 

As usual, the resonance at j = –1 corresponds to the arbitrariness of singular manifold φ(x , y, z, t ) = 0. In order 
to check the existence of sufficient number of arbitrary functions at the other resonance values, the full Laurent 
expansion (5.5) is substituted in Eq. (5.1). From the coefficient of φ–5, the explicit value of u0 is obtained as 
given in Eq. (5.4). Collecting the coefficient of φ–4, the result is obtained as zero. Absence of u1 proves that u1 
is arbitrary. This corresponds to the resonance value at j = 6. As solving these algebraic equations by Maple 
program , we obtain the results: u1, u2,u3,u4,u5,u6   Collecting the coefficient of φ–3 , the following equation is 
obtained to give u1  as solving these algebraic equations by Maple program , we obtain the results: u1, 
u2,u3,u4,u5,u6 
we conclude that the equation be satisfy to integration possible. 
To construct the Bäcklund transformation of Eq. (5.1), let us truncate the Laurent series  

u = 


0u + u1 + u2  + u3
2 + u4

3 , 

Hence  

                                                              u = –	 			 + u1 + u2 φ + u3 φ2 + u4 φ3 .                                              (5.7) 

where the pair of function (u,u4) satisfy Eq. (5.1) and hence Eq. (5.7) may be the associated Bäcklund 
transformation of Eq. (5.1), relating a solution u with a known solution u1 of the Eq. (5.1) which can be taken to 
be a known solution.  

 
6. The Rosenau – Hyman equation (RH) :  
                                                                   u ux + 3 ux uxx + u uxxx  –  ut = 0,                                                     (6.1)                                                        
We first present the Painlevé test of the Rosenau – Hyman equation. According to the WTC method, the 
general solution of PDE is in the form  
                                                                u( x, t ) = φα (x, t) ∑ 푢j (x, t) φj(x, t),                                             (6.2) 
where α is negative , φ(x, t) = 0 is the equation of singular manifold. The function uj ( j = 0, 1, 2,...) have to be 
determined by substitution of expansion into the PDE, So it becomes  
                                                                 ∑ 퐸 j ( u0 ,…,uj ,φ ) φj+q (x,t) = 0.                                                  (6.3) 
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where q is some negative constant. Ej depends on φ only by the derivatives of φ. 
The leading order of solution of equation (6.2) is assumed as  
                                                                                   u ≈ uo φ∝ .                                                                        (6.4) 
Substituting  Eq. (6.4) into (6.1) and equating the most dominant terms,          
the wanted α and u0 results could not be computed because balancing ( comparison ) two or more terms of the 
PDE leads to a contradiction as    
                                                                               2α+1= 2α–3 

                           0 = –4        contradiction 
So It is not  Painlevé  integrable. 
We note that  the Rosenau – Hyman equations (RH) has no (does not contain) linear  higher order derivative 
term.  
 
  
7. Cole – Hopf  (CH)  equation : 

                                                            u uxt  –   ux ut  –  푢  = 0 ,                                                             (7.1) 
We first present the Painlevé test of the A Cole – Hopf  (CH) equation. According to the WTC method, the 
general solution of PDE is in the form  
                                                                 u( x, t ) = φα (x, t) ∑ 푢j (x, t) φj(x, t).                                            (7.2) 
where α is negative , φ(x, t) = 0 is the equation of singular manifold. The function uj ( j = 0, 1, 2,...) have to be 
determined by substitution of expansion into the PDE, So it becomes  
                                                                  ∑ 퐸j ( u0 ,…,uj ,φ ) φj+q (x,t) = 0.                                                 (7.3) 
where q is some negative constant. Ej depends on φ only by the derivatives of φ. 
The leading order of solution of equation (7.2) is assumed as  
                                                                                 u ≈ uo φ∝ .                                                                          (7.4) 

Substituting  Eq. (7.4) into (7.1) and equating the most dominant terms,          

the following results are not obtained because balancing two or more terms of the PDE more terms of the PDE 
leads to a contradiction as     

                                                                              2α-2= 2α–2 
                       0 = 0        contradiction 

So It is not  Painlevé  integrable. 
We note that  the  Cole – Hopf  (CH) equation has no (does not contain) linear  higher  order derivative term. 
 

 
8.The Fornberg – Whitham equation (FW) :  

                                         ut  –   uxxt + ux  –  u uxxx + u ux – 3 ux uxx = 0,                                                (8.1) 
We first present the Painlevé test of the Fornberg – Whitham (FW) equation. According to the WTC method, 
the general solution of PDE is in the form  
                                                 u( x, t ) = φα (x, t) ∑ 푢j (x, t) φj(x, t) .                                                           (8.2) 
where α is negative , φ(x, t) = 0 is the equation of singular manifold. The function uj ( j = 0, 1, 2,...) have to be 
determined by substitution of expansion into the PDE, So it becomes  
                                                                ∑ 퐸j ( u0 ,…,uj ,φ ) φj+q (x,t) = 0.                                                   (8.3) 
where q is some negative constant. Ej depends on φ only by the derivatives of φ. 
The leading order of solution of equation (8.2) is assumed as  
                                                                             u ≈ uo φ∝ .                                                                              (8.4) 
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Substituting  Eq. (8.3) into (8.1) and equating the most dominant terms, the wanted α and u0 results are could 
not be computed because balancing ( comparison ) two or more terms of the PDE leads to a contradiction as  

2α-1= 2α–3 
                              0 = –2        contradiction 

So It is not  Painlevé  integrable.  
We note that  for  the Fornberg – Whitham (FW) equation  the linear  higher  order derivative term  and  the 
non-linear term are of  the same  derivative orders .  
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